↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
DER_IN(d(d(X)), DDX) → U51(X, DDX, der_in(d(X), DX))
DER_IN(d(d(X)), DDX) → DER_IN(d(X), DX)
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U31(X, Y, DY, DX, der_in(d(e(X)), DX))
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN(d(e(X)), DX)
DER_IN(d(e(+(X, Y))), +(DX, DY)) → U11(X, Y, DX, DY, der_in(d(e(X)), DX))
DER_IN(d(e(+(X, Y))), +(DX, DY)) → DER_IN(d(e(X)), DX)
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → U21(X, Y, DX, DY, der_in(d(e(Y)), DY))
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → U41(X, Y, DY, DX, der_in(d(e(Y)), DY))
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U51(X, DDX, der_out(d(X), DX)) → U61(X, DDX, DX, der_in(d(e(DX)), DDX))
U51(X, DDX, der_out(d(X), DX)) → DER_IN(d(e(DX)), DDX)
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
DER_IN(d(d(X)), DDX) → U51(X, DDX, der_in(d(X), DX))
DER_IN(d(d(X)), DDX) → DER_IN(d(X), DX)
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U31(X, Y, DY, DX, der_in(d(e(X)), DX))
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN(d(e(X)), DX)
DER_IN(d(e(+(X, Y))), +(DX, DY)) → U11(X, Y, DX, DY, der_in(d(e(X)), DX))
DER_IN(d(e(+(X, Y))), +(DX, DY)) → DER_IN(d(e(X)), DX)
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → U21(X, Y, DX, DY, der_in(d(e(Y)), DY))
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → U41(X, Y, DY, DX, der_in(d(e(Y)), DY))
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U51(X, DDX, der_out(d(X), DX)) → U61(X, DDX, DX, der_in(d(e(DX)), DDX))
U51(X, DDX, der_out(d(X), DX)) → DER_IN(d(e(DX)), DDX)
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
DER_IN(d(e(+(X, Y))), +(DX, DY)) → U11(X, Y, DX, DY, der_in(d(e(X)), DX))
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN(d(e(X)), DX)
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
DER_IN(d(e(+(X, Y))), +(DX, DY)) → DER_IN(d(e(X)), DX)
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U31(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
DER_IN(d(e(+(X, Y))), +(DX, DY)) → U11(X, Y, DX, DY, der_in(d(e(X)), DX))
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN(d(e(X)), DX)
U11(X, Y, DX, DY, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
U31(X, Y, DY, DX, der_out(d(e(X)), DX)) → DER_IN(d(e(Y)), DY)
DER_IN(d(e(+(X, Y))), +(DX, DY)) → DER_IN(d(e(X)), DX)
DER_IN(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U31(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PrologToPiTRSProof
DER_IN(d(e(+(X, Y)))) → DER_IN(d(e(X)))
DER_IN(d(e(*(X, Y)))) → DER_IN(d(e(X)))
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
U11(Y, der_out(DX)) → DER_IN(d(e(Y)))
DER_IN(d(e(*(X, Y)))) → U31(X, Y, der_in(d(e(X))))
DER_IN(d(e(+(X, Y)))) → U11(Y, der_in(d(e(X))))
der_in(d(e(*(X, Y)))) → U3(X, Y, der_in(d(e(X))))
der_in(d(e(+(X, Y)))) → U1(Y, der_in(d(e(X))))
der_in(d(e(const(A)))) → der_out(const(0))
der_in(d(e(t))) → der_out(const(1))
U3(X, Y, der_out(DX)) → U4(X, Y, DX, der_in(d(e(Y))))
U1(Y, der_out(DX)) → U2(DX, der_in(d(e(Y))))
U4(X, Y, DX, der_out(DY)) → der_out(+(*(X, DY), *(Y, DX)))
U2(DX, der_out(DY)) → der_out(+(DX, DY))
der_in(x0)
U3(x0, x1, x2)
U1(x0, x1)
U4(x0, x1, x2, x3)
U2(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DER_IN(d(e(+(X, Y)))) → DER_IN(d(e(X)))
DER_IN(d(e(+(X, Y)))) → U11(Y, der_in(d(e(X))))
Used ordering: Polynomial interpretation [25]:
DER_IN(d(e(*(X, Y)))) → DER_IN(d(e(X)))
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
U11(Y, der_out(DX)) → DER_IN(d(e(Y)))
DER_IN(d(e(*(X, Y)))) → U31(X, Y, der_in(d(e(X))))
POL(*(x1, x2)) = x1 + x2
POL(+(x1, x2)) = 1 + x1 + x2
POL(0) = 0
POL(1) = 0
POL(DER_IN(x1)) = x1
POL(U1(x1, x2)) = 0
POL(U11(x1, x2)) = x1
POL(U2(x1, x2)) = 0
POL(U3(x1, x2, x3)) = 0
POL(U31(x1, x2, x3)) = x2
POL(U4(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(der_in(x1)) = 0
POL(der_out(x1)) = 0
POL(e(x1)) = x1
POL(t) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PrologToPiTRSProof
DER_IN(d(e(*(X, Y)))) → DER_IN(d(e(X)))
U11(Y, der_out(DX)) → DER_IN(d(e(Y)))
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
DER_IN(d(e(*(X, Y)))) → U31(X, Y, der_in(d(e(X))))
der_in(d(e(*(X, Y)))) → U3(X, Y, der_in(d(e(X))))
der_in(d(e(+(X, Y)))) → U1(Y, der_in(d(e(X))))
der_in(d(e(const(A)))) → der_out(const(0))
der_in(d(e(t))) → der_out(const(1))
U3(X, Y, der_out(DX)) → U4(X, Y, DX, der_in(d(e(Y))))
U1(Y, der_out(DX)) → U2(DX, der_in(d(e(Y))))
U4(X, Y, DX, der_out(DY)) → der_out(+(*(X, DY), *(Y, DX)))
U2(DX, der_out(DY)) → der_out(+(DX, DY))
der_in(x0)
U3(x0, x1, x2)
U1(x0, x1)
U4(x0, x1, x2, x3)
U2(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
↳ PrologToPiTRSProof
DER_IN(d(e(*(X, Y)))) → DER_IN(d(e(X)))
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
DER_IN(d(e(*(X, Y)))) → U31(X, Y, der_in(d(e(X))))
der_in(d(e(*(X, Y)))) → U3(X, Y, der_in(d(e(X))))
der_in(d(e(+(X, Y)))) → U1(Y, der_in(d(e(X))))
der_in(d(e(const(A)))) → der_out(const(0))
der_in(d(e(t))) → der_out(const(1))
U3(X, Y, der_out(DX)) → U4(X, Y, DX, der_in(d(e(Y))))
U1(Y, der_out(DX)) → U2(DX, der_in(d(e(Y))))
U4(X, Y, DX, der_out(DY)) → der_out(+(*(X, DY), *(Y, DX)))
U2(DX, der_out(DY)) → der_out(+(DX, DY))
der_in(x0)
U3(x0, x1, x2)
U1(x0, x1)
U4(x0, x1, x2, x3)
U2(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DER_IN(d(e(*(X, Y)))) → DER_IN(d(e(X)))
DER_IN(d(e(*(X, Y)))) → U31(X, Y, der_in(d(e(X))))
Used ordering: Polynomial interpretation [25]:
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = 0
POL(0) = 0
POL(1) = 0
POL(DER_IN(x1)) = x1
POL(U1(x1, x2)) = 0
POL(U2(x1, x2)) = 0
POL(U3(x1, x2, x3)) = 0
POL(U31(x1, x2, x3)) = x1 + x2
POL(U4(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(der_in(x1)) = 0
POL(der_out(x1)) = 0
POL(e(x1)) = x1
POL(t) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PrologToPiTRSProof
U31(X, Y, der_out(DX)) → DER_IN(d(e(Y)))
der_in(d(e(*(X, Y)))) → U3(X, Y, der_in(d(e(X))))
der_in(d(e(+(X, Y)))) → U1(Y, der_in(d(e(X))))
der_in(d(e(const(A)))) → der_out(const(0))
der_in(d(e(t))) → der_out(const(1))
U3(X, Y, der_out(DX)) → U4(X, Y, DX, der_in(d(e(Y))))
U1(Y, der_out(DX)) → U2(DX, der_in(d(e(Y))))
U4(X, Y, DX, der_out(DY)) → der_out(+(*(X, DY), *(Y, DX)))
U2(DX, der_out(DY)) → der_out(+(DX, DY))
der_in(x0)
U3(x0, x1, x2)
U1(x0, x1)
U4(x0, x1, x2, x3)
U2(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
DER_IN(d(d(X)), DDX) → DER_IN(d(X), DX)
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
DER_IN(d(d(X)), DDX) → DER_IN(d(X), DX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
DER_IN(d(d(X))) → DER_IN(d(X))
From the DPs we obtained the following set of size-change graphs:
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
der_in(d(d(X)), DDX) → U5(X, DDX, der_in(d(X), DX))
der_in(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3(X, Y, DY, DX, der_in(d(e(X)), DX))
der_in(d(e(+(X, Y))), +(DX, DY)) → U1(X, Y, DX, DY, der_in(d(e(X)), DX))
der_in(d(e(const(A))), const(0)) → der_out(d(e(const(A))), const(0))
der_in(d(e(t)), const(1)) → der_out(d(e(t)), const(1))
U1(X, Y, DX, DY, der_out(d(e(X)), DX)) → U2(X, Y, DX, DY, der_in(d(e(Y)), DY))
U2(X, Y, DX, DY, der_out(d(e(Y)), DY)) → der_out(d(e(+(X, Y))), +(DX, DY))
U3(X, Y, DY, DX, der_out(d(e(X)), DX)) → U4(X, Y, DY, DX, der_in(d(e(Y)), DY))
U4(X, Y, DY, DX, der_out(d(e(Y)), DY)) → der_out(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U5(X, DDX, der_out(d(X), DX)) → U6(X, DDX, DX, der_in(d(e(DX)), DDX))
U6(X, DDX, DX, der_out(d(e(DX)), DDX)) → der_out(d(d(X)), DDX)